Synergistically Induces Apoptosis in Human Leukemia Suberoylanilide Hydroxamic Acid or Sodium Butyrate 17-Allylamino- 17-demethoxygeldanamycin with Coadministration of the Heat Shock Protein 90 Antagonist

نویسندگان

  • Mohamed Rahmani
  • Chunrong Yu
  • Yun Dai
  • Erin Reese
  • Wesam Ahmed
  • Paul Dent
  • Steven Grant
چکیده

Interactions between the histone deacetylase inhibitors (HDACIs) suberoylanilide hydroxamic acid (SAHA) and sodium butyrate (SB) and the heat shock protein (Hsp) 90 antagonist 17-allylamino-17-demethoxygeldanamycin (17-AAG) have been examined in human leukemia cells (U937). Coadministration of marginally toxic concentrations of 17-AAG with sublethal concentrations of SB or SAHA resulted in highly synergistic induction of mitochondrial damage (i.e., cytochrome c release), caspase-3 and -8 activation, and apoptosis. Similar interactions were noted in human promyelocytic (HL-60) and lymphoblastic (Jurkat) leukemia cells. These events were accompanied by multiple perturbations in signal transduction, cell cycle, and survival-related pathways, including early down-regulation of Raf-1, inactivation of extracellular signal-regulated kinase (ERK) 1/2 and mitogen-activated protein/ERK kinase (MEK) 1/2, diminished expression of phospho-Akt, and late activation of c-Jun-NH2terminal kinase, but no changes in expression of phospho-p38 mitogenactivated protein kinase. Coadministration of 17-AAG blocked SAHAmediated induction of the cyclin-dependent kinase inhibitor p21 and resulted in reduced expression of p27 and p34. 17-AAG/SAHAtreated cells also displayed down-regulation of the antiapoptotic protein Mcl-1 and evidence of Bcl-2 cleavage. Enforced expression of doxycyclineinducible p21 or constitutively active MEK1 significantly diminished 17-AAG/SAHA-mediated lethality, indicating that interference with ERK activation and p21 induction play important functional roles in the lethal effects of this regimen. In contrast, enforced expression of constitutively active Akt failed to exert cytoprotective actions. Together, these findings indicate that coadministration of SAHA or SB with the Hsp90 antagonist 17-AAG in human leukemia cells leads to multiple perturbations in signaling, cell cycle, and survival pathways that culminate in mitochondrial injury and apoptosis. They also raise the possibility that combining such agents with Hsp90 antagonists may represent a novel antileukemic strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coadministration of the heat shock protein 90 antagonist 17-allylamino- 17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells.

Interactions between the histone deacetylase inhibitors (HDACIs) suberoylanilide hydroxamic acid (SAHA) and sodium butyrate (SB) and the heat shock protein (Hsp) 90 antagonist 17-allylamino-17-demethoxygeldanamycin (17-AAG) have been examined in human leukemia cells (U937). Coadministration of marginally toxic concentrations of 17-AAG with sublethal concentrations of SB or SAHA resulted in high...

متن کامل

Cotreatment with suberanoylanilide hydroxamic acid and 17-allylamino 17-demethoxygeldanamycin synergistically induces apoptosis in Bcr-Abl+ Cells sensitive and resistant to STI571 (imatinib mesylate) in association with down-regulation of Bcr-Abl, abrogation of signal transducer and activator of transcription 5 activity, and Bax conformational change.

Interactions between the histone deacetylase (HDAC) inhibitors suberanoylanilide hydroxamic acid (SAHA) and sodium butyrate (SB) and the heat shock protein (Hsp) 90 antagonist 17-allylamino 17-demethoxygeldanamycin (17-AAG) have been examined in Bcr-Abl(+) human leukemia cells (K562 and LAMA84), including those sensitive and resistant to STI571 (imatinib mesylate). Cotreatment with 17-AAG and S...

متن کامل

Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts.

HL-60/Bcr-Abl cells, with ectopic expression of p185 Bcr-Abl tyrosine kinase (TK), and K562 cells, with endogenous expression of p210 Bcr-Abl TK, display a high degree of resistance against antileukemic drug-induced apoptosis (G. Fang et al., Blood, 96: 2246-2256, 2000). Present studies demonstrate that treatment with ansamycin antibiotic geldanamycin (GA), or its less toxic analogue 17-allylam...

متن کامل

Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species.

Interactions between histone deacetylase inhibitors (HDACIs) and the alkyl-lysophospholipid perifosine were examined in human leukemia cells. Coadministration of sodium butyrate, suberoylanilide hydroxamic acid (SAHA), or trichostatin with perifosine synergistically induced mitochondrial dysfunction (cytochrome c and apoptosis-inducing factor release), caspase-3 and -8 activation, apoptosis, an...

متن کامل

17-Allylamino-17-demethoxygeldanamycin (17-AAG) is effective in down-regulating mutated, constitutively activated KIT protein in human mast cells.

Mutations in the proto-oncogene c-kit cause constitutive kinase activity of its product, KIT protein, and are associated with human mastocytosis and gastrointestinal stromal tumors (GISTs). Although currently available tyrosine kinase inhibitors are effective in the treatment of GISTs, there has been limited success in the treatment of mastocytosis. 17-Allylamino-17-demethoxygeldanamycin (17-AA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003